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Abstract—Despite the prevalence of reconstruction-based deep
learning methods, time-series anomaly detection (TSAD) remains
a tremendous challenge. Existing approaches often struggle
with limited temporal contexts, insufficient representation of
normal patterns, and flawed evaluation metrics, all of which
hinder their effectiveness in detecting anomalous behavior. To
address these issues, we introduce a simple dissimilarity-based
approach for time-series anomaly detection (SimAD). Specifically,
SimAD first incorporates a patching-based feature extractor
capable of processing extended temporal windows and employs
the EmbedPatch encoder to fully integrate normal behavioral
patterns. Second, we design an innovative ContrastFusion module
in SimAD, which strengthens the robustness of anomaly detection
by highlighting the distributional differences between normal
and abnormal data. Third, we introduce two robust enhanced
evaluation metrics, unbiased affiliation (UAff) and normalized
affiliation (NAff), designed to overcome the limitations of existing
metrics by providing better distinctiveness and semantic clarity.
The reliability of these two metrics has been demonstrated by
both theoretical and experimental analyses. Experiments con-
ducted on seven diverse time-series datasets clearly demonstrate
SimAD’s superior performance compared with state-of-the-art
(SOTA) methods, achieving relative improvements of 19.85% on
F1, 4.44% on Aff-F1, 77.79% on NAff-F1, and 9.69% on AUC
on six multivariate datasets. Code and pretrained models are
available at https://github.com/EmorZz1G/SimAD

Index Terms—Anomaly detection, data mining, deep learning,
evaluation metrics, outlier detection, time series.

I. INTRODUCTION
IME-SERIES anomaly detection (TSAD) is a critical
component of time-series analysis, focused on accu-
rately detecting abnormal patterns in time-series data and
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identifying their specific locations [1], [2]. TSAD methods
utilize time-series data to identify anomalies in web traffic,
which play a vital role in ensuring the stability, security,
and efficient functioning of web services [3]. Unsupervised
methods have garnered considerable attention in academic
research, particularly for addressing this challenge through
reconstruction-based approaches [4], [5], [6], [7], [8]. These
methods assume that models are perfectly trained on normal
data and assign higher anomaly scores to anomalous data
during the testing phase. However, these methods have shown
insufficient performance in practical applications. A thorough
review of existing research [9], [10], [11], [12], coupled with
comprehensive experiments (detailed in our analyses), has
enabled us to identify several critical challenges in the field
of TSAD.

Challenge 1: Many methods rely on the reconstruction
assumption, which is inadequate for enhancing
the detection performance and may not always
hold true [9], [13]. Our experiments, including
both sensitivity and ablation analyses, validate
this limitation.

Failure to adequately utilize extended time
windows: The complexity of the attention
mechanism has constrained previous methods,
capping the window length at 200 or fewer
[13], [14]. This limitation, in turn, prevents the
capture of more informative data.

Limited expressive power hinders the repre-
sentation of normal features. On one hand,
certain methods fail to effectively model either
normal or abnormal data, or both. On the other
hand, most models are constrained by a limited
number of parameters, which restricts their
expressive capacity.

Challenge 2:

Challenge 3:

To address the above challenges, we propose a simple
dissimilarity-based approach for time-series anomaly detection
(SimAD) method, in both univariate and multivariate settings.
Specifically, to tackle Challenge 2, we design a feature extrac-
tor that can process longer time windows by splitting the
sequence into multiple patches. This strategy enables SimAD
to learn extended temporal receptive fields while using fewer
parameters. To address Challenges 1 and 3, we design the
EmbedPatch encoder and incorporate an enhanced attention
mechanism for layerwise modeling of dissimilarities between
normal and abnormal data features. Thus, the EmbedPatch
encoder can learn discriminative representations of normal
data more effectively. Essentially, the proposed EmbedPatch
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Fig. 1. Overview of SimAD.

encoder is a prototype, using V vectors to store prototyp-
ical features of normal data. The key differences between
the EmbedPatch encoder and traditional prototypes can be
highlighted in two aspects: 1) prototypes typically use the
last layer to preserve features, while the EmbedPatch encoder,
acting as the value matrices for the attention mechanism, not
only preserves features at different layers but also serves as a
querying repository for each level and 2) in traditional proto-
types, query results are obtained by calculating the similarity
between prototypes and features. In contrast, the EmbedPatch
encoder generates query results by interacting the attention
scores with the value matrices. With the EmbedPatch encoder,
each layer of attention mechanism incorporates a series of
embedded patches to learn features of that specific layer,
giving it a stronger capability to learn richer and more dis-
tinctive representations, which are beneficial to performance
improvement of anomaly detection. Finally, we introduce the
ContrastFusion module to amplify the divergence of normal
and abnormal data distributions for further accentuating their
dissimilarity.

Furthermore, we have analyzed the shortcomings of existing
evaluation metrics, including inflated metrics, low discrimina-
tive power, and insufficient semantic relevance. These issues
have contributed to false perceptions of progress in TSAD
[15], [16], [17]. To enable a fair comparison of performance,
we propose two improved evaluation metrics: unbiased affili-
ation (UAff) and normalized affiliation (NAff). These metrics
are designed to address the limitations of existing metrics
by providing better distinctiveness and semantics. We have
conducted analyses from both theoretical and experimental
perspectives to establish the reliability of the newly proposed
metrics. Extensive experiments indicate that the proposed
approach outperforms the state-of-the-art (SOTA) methods in
TSAD.

In summary, our article makes the following contributions.
1) We propose SimAD, a simple yet effective algorithm

designed for TSAD that can handle extended time win-
dows. The overall simplicity of SimAD is demonstrated
in Fig. 1. SimAD is a straightforward framework based
on dissimilarity measures, and its effectiveness has been
validated through comprehensive evaluations from mul-
tiple perspectives, as illustrated in Fig. 2.

2) We introduce two improved TSAD evaluation met-
rics, UAff and NAff, which address challenges such
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as inaccurate assessments and lack of semantic clarity.
The reliability of the proposed metrics is demonstrated
through theoretical and experimental analyses. Fur-
thermore, a comprehensive evaluation of the issues,
limitations, and strengths of existing metrics is con-
ducted.

3) Our algorithm outperforms significantly SOTA methods
on real-world datasets, excelling in point-level evalua-
tions, such as F1 and AUC, as well as sequence-level
evaluations like Aff, UAff, and NAfF (see Fig. 3). More-
over, we have released both our code and pretrained
models.

II. RELATED WORKS

Unsupervised learning methods [4], [18] have garnered
considerable attention due to the scarcity of labeled data for
anomaly detection in time-series sequences [1], [9], [13], [19],
[20], [21]. In past studies, anomaly detection algorithms have
become one of the key data analysis tools and are widely
used in fields like remote sensing and imaging [22], [23], [24],
[25]. These methods can be categorized as follows (detailed
discussion in Appendix A of the Supplementary Material):
1) algorithms based on classical machine learning [26], [27],
[28] transform traditional machine learning approaches into
deep networks, enhancing their ability to handle complex
data; 2) reconstruction-based approaches [14], [19], [29]
involve training models using normal data and leveraging
reconstruction error as an anomaly score, attributing higher
scores to anomalous data during testing; 3) prediction-based
techniques, as demonstrated in [30], learn from historical data
to predict future observations, considering prediction errors
as the foundation for anomaly detection; and 4) generative
adversarial learning-based methods [31], [32], [33] utilize
generative models to learn the distribution of normal data and
a discriminator network to detect anomalies.

Recently, some innovative algorithms have emerged in the
field of anomaly detection, including: 1) Transformer-based
approaches [13], [21], [34] leverage the power of Transformer,
which has shown exceptional success in natural language pro-
cessing tasks, and are increasingly being applied to anomaly
detection; 2) contrastive learning-based methods [20], [35],
[36], [37], [38] utilize contrastive learning to obtain robust
representations, specifically tailored for anomaly detection; 3)
diffusion-based methods [39], [40] model the propagation of
anomalies in complex networks and time-series sequences by
using the diffusion process; and 4) large language models
(LLMs) [41] exploit cutting-edge models, like GPT-2, adapted
specifically for anomaly detection tasks, capitalizing on the
sophisticated architectures and knowledge representation capa-
bilities.

These algorithms can be considered extensions or variations
of the above categories, which incorporate advanced network
structures and knowledge representation methods to enhance
anomaly detection performance. However, existing methods
have not effectively addressed the above three challenges. Most
methods are constrained by a limited number of learnable
parameters, which hinders them from capturing long-term
dependencies in data. Moreover, some reconstruction-based
methods solely focus on the task of reconstruction. The
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Fig. 2. Framework and workflow of SimAD. (a) SimAD framework. (b) Training phase. (c) Testing and detect anomalies.

differences between our dissimilarity-based approach and
contrastive learning-based methods are in the framework
(EmbedPatch and ContrastFusion), motivation (dissimilarity
of perspectives [42]), and implementation, as discussed in
Appendix I of the Supplementary Material.

ITI. PROPOSED APPROACH
A. Framework of SimAD

1) Overview: In Fig. 2(a), SimAD comprises a Feature
Extractor, EmbedPatch encoder, and ContrastFusion module.
In the context of temporal anomaly detection, the original
time-series data is denoted as X € R7*C, where T denotes
the length of the time series and C denotes the number
of channels. The goal of this task is to predict the label
+ € RT for X, where y; = 1 indicates an anomaly at the
ith time point and y; = O otherwise. The input data X is first
processed by the Feature Extractor to generate patch tokens N.
Next, at each layer of the EmbedPatch encoder, the attention
mechanism combines the patch tokens from the previous layer
with the current tokens to capture their interdependencies.
We then utilize a linear layer to reconstruct the original
features and compute anomaly scores. Finally, we design the
ContrastFusion module to strengthen the distinction between
normal and abnormal data distributions, thereby enhancing
overall detection performance.

2) Feature Extractor: To extract unified sequence-level
temporal features, we devised a patch-based feature extractor,
which allows SimAD to process longer time windows and
capture richer semantic information. Specifically, X is first
fed to the feature extractor. To address distribution shifts
[43], [44], we introduce instance normalization (IN) [43].
The improved positional embedding (PE) is then used to
incorporate temporal positional encoding, enabling SimAD
to learn the relationships between C channels actively. The
improved PE applies sinusoidal positional encoding solely to
the temporal positions, in contrast to the original PE [45],

without the necessity of encoding the channel indices. This
distinction arises from the differing implications of channels
in time series and the word embeddings in the language
model.

Then, for C channels, the temporal sequence is processed
through two operations via Patching(-). First, the original input
X € R7*C is segmented into M patches of length P, result-
ing in an intermediate representation N’ € RM*PXC where
T = M x P. Next, N’ is reshaped to obtain N’ € RM*#0) n
this article, we use the superscript “/” to denote intermediate
process variables, such as N’. Finally, value embedding (VE) is
a simple linear transformation that maps all patches into a uni-
fied D-dimensional space, specifically N € RY*P Tt is defined
as N = VE(N’) = LayerNorm(Linear(LayerNorm(N"))). Here,
D is a predefined and represents the final dimension of the
model. The term LayerNorm refers to layer normalization
[45], which has been shown to be more suitable for sequential
data. The term Linear refers to linear layer. The processing
performed by the Feature Extractor can be described as
follows:

X’ = PE(IN (X)),

N = VE (Patching (X)) (1)

where N refers to the naive representation and the original
input of EmbedPatch encoder. With the designed feature
extractor that maintains the framework’s simplicity, SimAD
can handle data with longer time windows, whose necessity
will be demonstrated in Section IV-C.

3) EmbedPatch Encoder: To enhance SimAD’s capability
of modeling the dissimilarity between normal and abnormal
samples, we made an improvement to the original attention
mechanism. Inspired by Zhang et al. [9], You et al. [11], and
Zhong et al. [12], this improvement involves incorporating
the EmbedPatch E@ € RY*? with embedded queries into the
EmbedPatch encoder backbone of SimAD, where V denotes
the number of patch embeddings (EmbedPatch) and (i) for
ith layer of encoder. Determining a proper V often requires
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prior and a larger number of embeddings to accommodate
different scenarios [46]. Therefore, a linear projection is
stacked on EmbedPatch to obtain E?” € R¥ <P for reducing
the dimensionality, where M* < V. Here, M* represents
the number of embeddings. It equals M from the Feature
Extractor (M* = M), but they serve different purposes in the
context. Embedding (EmbedPatch) is learnable, whereas naive
representation refers to the raw, high-dimensional features
extracted directly from the original time series. Intuitively,
each of the M patches finds a corresponding embedding from
the V patch embeddings, resulting in M* new embeddings for
the original patches. This simple component allows SimAD to
efficiently learn key information from normal samples without
being overly dependent on prior knowledge.

To achieve this, we employ an improved multihead atten-
tion. For each head k € [1,2,...,U], we define the query
matrix as Q) = NOWZ, the key matrix as K = NOWK_ and
the value matrix as V" = E{ = W%’Eff), where W2, WK ¢
RP*4 WY e RM*VED = [EV,EY,...,EYLEY € RV*,
and d is defined as I_%J, which represents the dimension of
the head. For the first layer of the EmbedPatch encoder, its
input NV is the output N from the Feature Extractor. Next,
we define the attention calculation between different patches
in each layer as follows:

Z = Attention ( 9K, V,((i))

( OROT
= Softmax |~ | v, )
\/L_i k

Note that Q,(f) and Kg) here are generated by different param-
eters, so the attention scores are asymmetric. On the top of
each layer, we utilize a linear layer to aggregate features Z}(’)
from different heads, resulting in Z® € RM*P, Specifically,
we first concatenate the features from U heads along the
last dimension. For each Z,(:) € RMxd the concatenation
yields Z0/(e RM*Py = [Z{,...,Z})]. Subsequently, this
concatenated feature is aggregated via a linear layer Linear,
resulting in Z® = Linear(Z"").

Subsequently, we proceed with the original “Add and
Norm” operation to generate the input, NV, for the next
layer

N% = LayerNorm ( N¥ + Z© ),
N+ = LayerNorm ( N + FFN (N©') ) 3)

where FFN(:) denotes a two-layer feed-forward network
(FEN), as in [45], N’ denotes the intermediate variables, and
(i) indicates the features at different layers.

Finally, a linear layer is used to restore X from the last layer.
As shown in Fig. 2(a), the final output of the EmbedPatch
encoder is processed by a linear layer, which can be expressed
as X = Linear(N"). Here, NCD represents the features from
the last layer of the encoder.

To enable the model to detect anomalies in long-context
time series, we need to optimize the parameters of SIimAD’s
Feature Extractor and EmbedPatch encoder. During the train-
ing phase, the mean square error (mse) [13], [19] is used

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

to measure the difference between X and X, and a patch-
based similarity loss is employed to ensure continuity between
patches. The mse term ensures that the model reconstructs
the time series accurately locally. However, this point-to-point
reconstruction alone cannot guide the model to detect anoma-
lies over long time windows. The similarity term addresses
this limitation. It first converts X into N € R¥*(PO) yging the
Patching operation, and then calculates patch-based similarity
along the last dimension. The final training loss is given by (4).

During the testing phase, SimAD utilizes L. to calculate
anomaly scores and detect anomalies

Lrec = mse (X X) + (1 — Similarity (X X)) 4)

where cosine similarity is adopted as a similarity measure.

4) ContrastFusion Module: Although the EmbedPatch
encoder enables SimAD to memorize normal samples, it does
not substantially enhance the discrimination between normal
and abnormal data. To mitigate this limitation, the Contrast-
Fusion module is designed to employ contrastive learning to
enlarge the feature distance between normal and abnormal data
features.

To generate negative samples for contrastive learning with-
out introducing prior, we adopt the simplest method by using
Gaussian noise [1], [9]. Specifically, we use the equation X~ =
X + a-J, where J is sampled from a Gaussian distribution, and
a controls the level of noise. This is a common time-series data
augmentation method [1], [9]. From then on, we use variables
with “=" to represent negative samples or features. Inspired by
denoising autoencoders [47], we incorporate a denoising loss
into the final objective function. Similarly, to guide the model
to focus on contextual temporal associations during denoising,
we added an extra similarity term

Lenoise = mse (X7, XT) + (1 - Similarity (X™,XT) ). (5)

X indicates the branch opposite to the negative sample
X~, emphasizing their opposition and being differentiated by
colors/symbols in Fig. 2(a) for convenience and consistency.
Keep in mind that X* = X in this case. The two branches of
ContrastFusion, which are optimized without regard to recon-
struction, share structural similarities with previous image
self-supervised techniques such as SImCLR [48] and SimSiam
[49]. Therefore, our methodology can also be considered as a
self-supervised (and/or unsupervised [4]) learning strategy.

To learn invariant features, we feed positive samples X and
negative samples X~ into the Feature Extractor and Embed-
Patch encoder, resulting in the acquisition of representations
N+ and N~. Previous self-supervised works [1], [10], [48],
[49] have shown that constructing different views through data
augmentation can guide models to learn invariant features. For
this purpose, we utilize a projection head Z(-), akin to prior
contrastive learning methods, to facilitate the acquisition of
meaningful and discriminative representations

H' = 2 (N¥) = Linear (ReLU (Linear (NT)))  (6)

where ReLU is the activation function. We derive low-
dimensional representations H* and H~ for N* and N,
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respectively. To design an asymmetric feature contrastive loss,
we utilize gradient stopping

Leon = mse (HT, StopGrad (H"))
+ (1 — Similarity (H*, StopGrad (H_)))
+ mse (H", StopGrad (H™))

+ (1 — Similarity (H_, StopGrad (H*))) .

5) Joint Optimization for Training: As described above,
SimAD aims to optimize the reconstruction of positive
samples, denoise noisy samples, and amplify the feature differ-
ences between positive and negative samples [see Fig. 2(b)].
During the initial stages of training, the model focuses
primarily on reconstruction and denoising. Since the con-
trastive loss may introduce additional training complexity, the
weight of contrastive loss incrementally rises in the initial
Nyarm-up iterations until it reaches the maximum value of

i+1
L ’ﬁmax}-

Nwarm-up

Bi = min

Algorithm 1 Pseudocode for Training SimAD
1 # J: i.i.d Gaussian Noise
FE: Feature Extractor
Enc: EmbedPatch Encoder
CF: ContrastFusion
SimAD: Combination of FE, Enc, and CF
R: Rearrange Data
for x in Data_ Loader:
x1, x2 = x, x + ]
x_outl, siml = SimAD(x1) # SimAD

FH H H B W

O 0 N N R W N

Processing

10 X out2, sim2 = SimAD(x2)

11 # Reconstructs and Projects Features

12 X patch = R(x)

13 rec_loss = loss func(x outl,x patch)

14 denoise loss = loss func(x out2,x patch)

15 sim loss = loss func(siml,sim2.detach())
+ loss func(sim2,siml.detach())

16 loss = rec_loss + denoise loss -
sim_loss* warmup

17 loss.backward()

18 update (SimAD)

20 # loss function

21 def loss func(sl,s2):

22 return 12 loss(sl,s2) +
(1-cos_1loss(sl,s2)).mean()

The overall objective function combines the reconstruction
loss, denoising loss, and contrastive loss that are given as
follows:

L = Lrec + Laenoise _,B‘Ccont- ®)
Algorithm 1 shows the training workflow of SimAD, highlight-
ing the simplicity of our method in design and implementation.
B. Baselines

1) Inference: Anomaly Score: To calculate the anomaly
score for query samples, we use the following equation:

Lcore = mse (X, X) + (1 — Similarity (X,X)). (9

TABLE I
DETAILS OF BENCHMARK DATASETS

Dataset | #Training | #Test (Labeled) | Dimension | Anomaly ratio (%) | Bias | Ideal Bias
MSL 58317 73729 55 10.5 51.34 50.55
SMAP 135183 427617 25 12.8 51.48 50.82
SWaT 99000 89984 26 12.2 52.94 50.74
WADI 241921 34561 123 5.74 54.81 50.16
PSM 132481 87841 25 27.8 53.17 53.86
Swan 60000 60000 38 32.6 54.83 55.31

Note that the first term (mse) has a length of T time points,
while the second term (similarity) has a length of M patches.
To match the length, each patch in the similarity term is repli-
cated P times to reach 7 time points in the implementation.
As shown in Fig. 2(c), this process involves inputting time-
series data into SimAD and performing feature extraction and
representation to obtain the final feature Z“. This feature is
then fed into a linear layer to reconstruct the data as closely
as possible to the original: X = Linear(Z"). We then compute
the mse and cosine similarity between the reconstructed and
original data. In inference stage, the ContrastFusion module is
not used, eliminating the need to generate negative samples or
compute similarities between positive and negative samples.

C. Improving Affiliation Metrics

Recent studies [15], [16], [17] have highlighted the limita-
tions of conventional metrics used in TSAD. The affiliation
metric [50] is a parameter-free method that has shown
promising performance. However, based on experiments and
theoretical analysis (see Appendix C of the Supplementary
Material), the affiliation precision (Aff-Pre) tends to approach
0.5, while the affiliation recall (Aff-Rec) tends to approach
0.99 when confronting with random anomaly scores. This
leads to an affiliation F1 score (Aff-F1) of approximately
0.7, suggesting that the metric’s discriminatory capability is
insufficient. To address this limitation, we introduce UAff and
NAff metrics. Both of them exhibit superior discriminatory
ability and provide a more accurate reflection of an algorithm’s
performance.

Experiments in Table I indicate that the Aff-Pre varies
across different datasets but consistently tends to approach
0.5, which can be interpreted as a dataset-specific bias,
denoted by Aff-Pre;;,;. Meanwhile, there has been insufficient
encouragement for high-precision models, while the penalties
for low-precision models are inadequate. In this context,
we design unbiased Aff-Pre (UAff-Pre) and unbiased Aff-F1
(UAff-F1), both of which can alleviate the dataset-specific
bias and offer a more equitable assessment of the algorithm’s
precision performance
Aff-Pre — Aff-Pre;

1 — Aff-Prey;,;
2 - |UAff-Pre| - Aff-Rec (= 1)UAFPre<0l (1)
|[UAff-Pre| + Aff-Rec
where UAff-F1 < 0 when UAff-Pre < 0. Although UAff-Pre
denotes an improvement over its original version and surpasses
UAff-F1, it introduces additional parameters, deviating from
its parameter-free nature. Since the majority of real-world

UAff-Pre = (10)

UAff-F1 =
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datasets exhibit Aff-Pre;;,; < 0.55, we further propose a
modified version of NAff metrics. The computation follows a
similar process, with the exception that we set Aff-Pre,;,; =8
for constant while maintaining other aspects unchanged. In
other words, NAff-Pre can be calculated as Aﬂ'llirefﬁ , and
NAff-F1 is calculated similar to UAff-F1. The mathematical

and experimental analyses of the metrics are in Appendix C.

IV. EXPERIMENTS

We evaluate the effectiveness of our proposed SimAD by
conducting extensive comparison experiments against SOTA
competing methods on six real-world multivariable datasets:
MSL, SMAP, PSM, SWaT, WADI, and Swan. In addition, we
utilize a univariate dataset UCR [51]. The details of the above
six multivariable datasets are in Table I.

We employ the F1 without point adjustment, Aff-F1, and
the improved UAff-F1 and NAff-F1 for performance eval-
uation. We exclude the point-adjusted F1 score due to its
acknowledged potential for false improvements. It is noted
that although the classical F1 score is not optimal for time-
series data, it can still be employed for evaluation purposes
[15], as detailed in Appendix D-A of the Supplementary
Material. Furthermore, we present an analysis of VUS [52]
scores (see Table S4 in the Supplementary Material) for all the
datasets. In TSAD, the F'1 score evaluates model performance
by balancing precision (Prec) and recall (Rec). It is defined as

b VI TP
rec = ———, Rec = ——,
TP + FP TP + EN
Prec x R
Fl=2x ¢ X ReC (12)
Prec + Rec

Here, TP, FP, and FN represent true positives, false positives,
and false negatives. The F'1 score ranges from O to 1, with
higher values indicating better performance. Due to space
limitations and the need for conciseness, the calculation of
Aff-F1 and VUS refers to the original papers [50], [52]. We
discuss UAff and NAff in Section C, comparing them with
other metrics, and summarize the limitations and advantages
of existing metrics in detail.

A. Baselines

Our model is compared against 20 baselines, which include
machine learning-based models like LOF, isolation forest
(IForest), and PCA; deep learning-enhanced models like Deep
SVDD [26] and deep IForest (Deep IF) [27]; reconstruction-
based models like USAD [19], TCN-ED [14], AdaMemBLS
[1], and NPSR [53]; prediction-based methods like TimesNet
[30] and M2N2 [54]; Transformer-based models such as
Anomaly Transformer (AnomTrans) [13] and TranAD [21];
contrastive learning-based models like COUTA [35], NCAD
[36], and DCdetector [20]; diffusion-based model D3R [39];
and LLM-based GPT2-Adapter [41].

B. Quantified Comparisons

Table II shows comparisons between SimAD and base-
lines on six real-world datasets. It is obvious that SimAD
performs superior to other models. Compared with the best
baseline on datasets SWaT, WADI, and Swan, SimAD exhibits
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Fig. 3. Comparison analysis of relative performance.

an improvements of 5.15% (76.88%—82.03%), 13.31%
(50.67%—63.98%), and 15.24% (55.99%—71.23%) in F1
score. In contrast, the NAff-F1 exhibits absolute improvements
of 11.09% (55.73%—66.82%), 30.87% (45.39%—76.26%),
and 19.05% (33.99%—53.04%), respectively. In addition,
SimAD has shown slight superiority over other models on
datasets MSL and SMAP. On these datasets, SimAD achieved
an absolute improvement of 1.26% and 1.00% in Aff-F1,
respectively, along with higher scores in other metrics as
well.

Table III summarizes the evaluation metric scores of models
across all datasets, clearly indicating that SimAD achieved
improvements of 9.07% on F1, 3.18% on Aff-F1, 16.63%
on UAft-F1, and 20.55% on NAft-F1, and 6.83% AUC,
compared with the SOTA baseline. In contrast, although
models such as TimesNet and D3R exhibit good perfor-
mance on specific evaluation metrics (UAff-F1 and Aff-F1),
their performances on other metrics (Aff-F1 and NAff-F1)
are inferior to those of SimAD, and even lower than those
of random algorithms. Fig. 3 shows the advantages of our
model, compared with other baseline models across multiple
evaluation metrics. This further confirms the superior gener-
alization capability of SimAD, whereas other algorithms may
display larger performance fluctuations due to an excessive
focus on specific dataset characteristics. (see a more detailed
comparison in Appendix E-D of the Supplementary Material.)

In addition, we evaluate the effectiveness of our model
in handling univariate dataset UCR in Table IV, which
includes Avg.+ (calculated using only positive values) and
Avg. scores. From this table, SImAD demonstrates superior
performance. Specifically, SimAD achieves an improvement
of 13.33% (1.66%—14.99%) in Avg.+ F1 and 13.38%
(1.61%—14.99%) in Avg. FI, compared with the best
baseline. Furthermore, SimAD achieves an improvement of
25.75% (9.41%—35.16%) in Avg.+ UAf-FI1 and 17.52%
(2.01%—19.53%) in Avg. UAff-FI, compared with the best
baseline.

C. Sensitivity Analysis

We performed sensitivity analysis on hyperparameters of
SimAD, which include the window size and the number of
patch embeddings. Fig. 4 illustrates the influence of different
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TABLE I
COMPARISON RESULTS. ALL RESULTS ARE IN %, THE BEST IN BOLD, AND THE SECOND IN UNDERLINED

Datasets | MSL | SMAP | SWaT
Methods | F1 AUC Aff-Pre Aff-Rec Aff-F1 UAff-F1 NAff-F1| F1 AUC Aff-Pre Aff-Rec Aff-F1 UAff-F1 NAff-F1| F1 AUC Aff-Pre Aff-Rec Aff-F1 UAff-F1 NAff-F1
Random | 18.60 50.01 5134 99.99 67.84 0.00 520 [2206 50.18 5148 1000 67.97 0.00 574 |21.06 50.10 5294 99.99 69.23 000  11.09
LOF 1936 5575 5357 8890 66.86 874 1322 |23.64 6239 4600 8126 5874 -19.84 -1458 5822 8459 9987 270 525 525 525
IForest | 1090 59.09 5509 97.63 7044 1431 1845 |23.78 61.15 3945 7023 50.52 -36.64 -32.45 |3852 83.80 1000 271 527 527 527
PCA 1033 5325 5550 9744 7072 1573 1977 [2296 5870 39.67 7031 5072 -36.15 -31.93 |26.05 81.85 9996 270 525 525 525
Deep SVDD [24.30 61.80 52.67 99.93 6898 10.53  10.13 |21.28 61.14 4498 8845 59.64 -17.60 -18.02 |22.57 86.81 5358 99.99 69.77 1375  13.37
USAD  |2250 57.12 5190 9729 67.69 7.3 731 |16.57 6279 39.56 69.48 5041 -31.78 -32.12 |21.70 88.66 53.00 100.0 69.28 1171 1131
TCN-ED | 19.66 51.14 5144 9999 6793 604 561 [2290 5891 5139 9998 67.89 586 542 |21.65 89.23 5298 1000 69.26 11.64 1124
COUTA | 2088 5559 5124 99.65 67.68 529 485 |2269 5874 5148 1000 67.97 618 574 |47.65 7554 79.98 3320 4692 4276 4273
TranAD | 2281 50.03 52.82 9934 6897 1107 10.66 |22.74 59.74 3941 7030 50.51 -32.21 -32.56 |25.50 8890 55.65 99.66 7142 20.64  20.30
NCAD  [2205 6020 5638 8330 6725 2246  22.14 |23.09 5345 51.88 9999 6832 7.67 725 |68.72 8292 6501 8558 73.89 44.64 4446
Deep IF | 19.11 5594 5145 1000 67.94 608 564 [29.14 60.09 5375 98.67 69.59 1431 1393 |21.65 89.52 5298 1000 69.26 11.64 1124
AnomTrans | 18.39 52.61 5021 99.83 6681 -453 083 |1606 5218 5584 99.11 7144 1649 2090 |2344 80.80 5024 9949 6677 -10.83  0.96
TimesNet |21.24 57.18 51.12  99.95 67.64 481 436 [2437 5373 4950 99.86 66.19 -152 -1.99 |21.66 73.24 57.84 9377 7155 27.16  26.86
DCdetector | 11.62 50.31 51.96 97.77 67.85 252 752 |2656 58.50 55.55 99.78 7137 1548 1997 |23.24 5278 5263 9830 6856 -128  10.00
D3R 2398 63.00 5361 9997 69.79 892  7.65 |2271 5456 5143 1000 6792 -021 007 |4589 7995 6147 7852 6896 2947  36.02
GPT2-Adapter| 13.72 52.03 5331 9701 6881 7.80 675 |24.12 5548 5328 99.84 6948 7.8  3.67 |22.30 5230 5251 9813 6841 -1.79 007
NPSR  [23.72 61.16 5205 99.81 6842 289  7.88 2268 6126 5146 100.0 6795 -0.06 568 |76.88 90.18 7121 81.16 7586 5254 5573
M2N2  [21.76 59.15 5138 100.00 67.88 0.17 536 [22.68 5405 5146 100.00 67.95 052 569 |3850 67.79 59.15 96.83 7344 2754 3077
AdaMemBLS | 19.11 5178 57.07 9537 7141 2099 24.64 |2693 53.66 5330 99.80 69.49 724 1238 [74.10 81.61 5357 100.00 69.76 2.65  13.32
Ours  [30.02 6270 5630 99.76 7198 1850 22.37 [29.39 6546 56.84 99.82 7244 1991  24.07 [82.03 90.31 7846 80.88 79.65 64.93  66.82
Datasets | WADI | PSM | NIPS-TS-Swan
Methods | F1 AUC Aff-Pre Aff-Rec Aff-F1 UAff-F1 NAff-F1| F1  AUC Aff-Pre Aff-Rec Aff-F1 UAff-F1 NAff-F1| F1  AUC Aff-Pre Aff-Rec Aff-F1 UAff-F1 NAff-F1
Random | 10.79 50.03 54.81 99.95 7079 0.00  17.54 4093 50.16 53.17 99.95 69.41 000 1191 4625 50.13 5483 9682 70.01 000  17.56
LOF 10.58 6544 5176 2572 3436 -10.67 620 |2391 81.28 7747 5213 6232 5201 5350 |21.37 77.89 8201 11.14 19.62 1881 1898
IForest | 30.88 74.84 57.68 82.53 67.90 11.82 2591 |3852 7512 7297 4646 5677 4427 4620 |46.18 85.12 9411 1631 2781 2747  27.54
PCA 3430 50.53 4810 52.07 50.01 -23.09 -7.08 |4320 72.06 77.86 79.65 7874 6344 6557 |49.18 7288 9296 1603 2735 2695  27.02
Deep SVDD | 734 5947 50.06 5579 5277 072 024 |4446 78.09 5392 99.98 70.06 1493 1456 |5599 7532 5684 89.93 69.66 24.07  23.76
USAD | 10.86 53.61 5492 1000 7090 1827 1791 |47.90 6453 5530 9871 70.88 1948 19.14 5263 66.76 5526 68.62 6122 1857 1825
TCN-ED | 10.86 53.01 5492 100.0 7090 1827 1791 [43.46 6397 53.16 1000 6942 1229 11.89 |49.22 7137 5510 9992 71.03 1887 1852
COUTA  |2692 5052 99.18 23.08 3744 37.38 3738 |4821 69.36 57.98 9930 7321 27.80 2750 |47.19 71.38 4507 8650 66.54 1524  14.87
TranAD | 1178 52.60 5591 9196 69.54 21.27 2094 |4320 6522 60.88 9209 7330 3544 3519 |51.93 7000 57.86 90.18 7049 27.07 2678
NCAD | 10.87 6284 5499 100.0 7096 1849 18.14 |46.61 61.76 7779  53.08 63.10 5435 5430 |37.57 5224 5432 9406 68.87 1620 1583
Deep IF | 10.86 5143 5492 100.0 7090 1827 1791 |4347 69.06 53.15 1000 6941 1224 11.84 |49.19 7330 5510 9998 71.05 1886 1851
AnomTrans | 11.24 5298 5143 9515 6677 -13.84 556 |39.81 5218 5278 96.07 6813 -1.65 1051 |44.86 5462 5521 9236 69.11 168 1873
TimesNet | 17.65 65.08 6525 3930 49.05 3445 3434 |43.60 5874 77.84 6723 7215 6097 6091 |43.16 53.62 60.75 8129 69.53 3423  33.99
DCdetector | 1133 50.12 59.72  94.64 7323 1951 3226 |2272 50.38 53.05 9498 68.08 ~-049 1147 |48.83 5035 5508 99.82 7099 1.1 1845
D3R 1286 5139 5647 99.98 7217 7.09 246 |4424 60.64 5384 1000 69.99 282 393 4945 6254 5770 9606 72.10 1193  9.98
GPT2-Adapter| 10.68 51.21 5562 9829 71.04 3.55  -027 |3524 5123 5433 9516 69.17 484 218 |4523 5877 61.17 6955 6509 2336 18.28
NPSR  [50.67 80.19 6515 9045 7574 3653 4539 |51.02 70.67 5471 9937 7056 629  17.14 |49.30 62.61 5513 99.99 7107 132 1861
M2N2 13.55 55.68 5492 100.00 7090 1373 17.93 |47.71 5491 5543 9436 69.84 1545 1948 3840 70.12 60.94 93.68 73.84 3260 3547
AdaMemBLS | 29.09 53.85 5495 100.00 7093 0.63 1801 |46.69 6326 5822 9265 7151 1932 27.92 [4935 5127 5514 100.00 71.09 138  18.66
Ours  |63.98 87.97 8236 9281 8727 7359 7626 |52.07 7199 6246 9176 7433  32.63 3920 |71.23 8517 7617 5375 63.03 5029  53.04
TABLE III TABLE IV
AVERAGE PERFORMANCE AND RANKING OF DIFFERENT ALGORITHMS. COMPARISON OF DIFFERENT MODELS ON DATASET UCR
RK. DENOTES THE RANKING
Avg. | F1 RK.|AftF1 RK.|UAM-F1 RK.|NA-F1 RK.|AUC RK.|V_PR RK.|Avg. RK. Datasets | UCR
Random [26.62 16 | 6921 9 | 000 19| 1151 15 50.10 20 [27.71 18 | 1617 Metrics| Methods | F1  Aff-Pre Aff-Rec Aff-F1 UAff-F1 NAff-F1
LOF  [26.18 17 [ 4119 20| 905 13| 1376 10 (7123 3 [3975 9 | 12.00
[Forest  |31.46 7 | 4645 19 | 11.09 11| 1515 9 [73.19 2 [4339 7 | 9.17
PCA (3100 8 |47.13 18| 869 14| 1310 13 |64.88 8 |37.84 13| 1233 AnomTrans| 1.17. 50.66 9894 6688 941  10.88
Deep SVDD 2932 11| 6515 15| 773 15| 734 18 7044 5 5013 3 | 1117 Avg.+ |DCdetector| 1.66_ 50.90 ~ 99.96 6741  6.71 5.52
USAD  [28.69 13 6506 16| 733 17| 697 19 (6558 7 |5195 2 | 1233 Ours 1499 57.83 9991 7252 3516 34.38
TCN-ED (2796 15| 6941 8 | 1216 10| 1176 14 |6461 9 4607 6 | 1033
COUTA (3559 4 |5996 17| 2244 4 | 2208 5 |6352 11 (3675 14| 917
TranAD  [29.66 10 | 6737 13 | 13.88 8 | 1355 11 |6441 10 [47.66 5 | 9.50 AnomTrans| 1.15 5039 9773 6655  1.30 1.23
NCAD (3482 5 | 6873 10| 27.30 2 | 27.02 2 |6224 12 |3821 12| 7.17 Avg. DCdetector | 1.61  50.63  83.30 67.06  2.01 2.64
Deep IF (2890 12 [ 69.60 7 | 1357 9 | 1318 12(6656 6 [39.69 10 | 9.33 Ours 1499 5783 9747 7252 1953 19.46
AnomTrans [25.63 18 [ 68.17 12 | 211 20 | 958 17 [57.56 17 |2649 19 | 17.17
TimesNet 2861 14 | 66.02 14 | 2668 3 | 2641 3 (6027 15 3647 15 | 10.67
DCdetector [24.05 20 | 7001 6 | 614 18| 1661 8 |52.07 19 [2833 17 | 14.67
D3R (3319 6 | 7016 5 | 1000 12| 1002 16 6201 13 [3959 11 | 10.50
GPT2-Adapter |25.22 19 | 68.67 11| 7.49 16 | 5.01 20 [53.51 18 |2833 16 | 16.67
NPSR  [45.71 2 [ 7160 2 | 1658 7 | 2507 4 |7101 4 [4929 4 | 383 .
M2N2 (3043 9 | 7064 4 | 1758 6 | 1902 7 |60.28 14 |21.55 20 | 10.00 1024 to 2048, the model’s loss further decreases while the
AdaMemBLS (4088 3 [70.70 3 | 1858 5 | 1916 6 [59.24 16 |4217 8 | 683 . . T .
Ows  [5479 1 (7478 1| 431 1 | 4696 1 |727 1 |29 1| 100 improvement in the F1 score is limited. This suggests that

window sizes on the model’s performance on the WADI
dataset. As the window size increases, the model’s loss
exhibits a decreasing trend, and its accuracy consistently
improves. A larger window size incorporates more temporal
and contextual information, enabling the model to capture
patterns and trends and improve the detection performance.
It is worth noting that when the window size increases from

larger window sizes also increase the optimization difficulty.

Fig. 5(a) depicts impacts of the number of patch embeddings
on performance on the WADI dataset. When the number
of patch embeddings is set to O (i.e., the original atten-
tion mechanism), the model’s performance is significantly
lower. This demonstrates the effectiveness of EmbedPatch in
enhancing the memory of normal samples. As the number
of patch embeddings increases, both the model’s Rec Loss
and F1 score exhibit fluctuating changes. It can be inferred
that the model achieves the optimal performance when the
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Fig. 6. Ablation study. The data labeling denotes an upper bound on the
performance improvement of our model.

number of patch embeddings is between 100 and 200. From
Fig. 5(b)—(d), it is evident that increasing the number of layers
and setting an appropriate level of noise and dimension of
features can result in improved model performance on the
WADI dataset. However, a notable decline in performance is
observed when the dimension is set to 128. This indicates that
models with smaller dimensions face challenges in learning
complex features.

D. Ablation Analysis
To validate the effectiveness of our model, we con-
ducted ablation studies on ContrastFusion, data augmentation,
EmbedPatch, and asymmetric optimization in Fig. 6. Here we
provide descriptions about the model’s variants.
1) w/o Contrastive (Cont.): It indicates the removal of
contrastive learning in the ContrastFusion. By removing

rror bar represents the standard deviation. (a) Number of patch embedding.

this, Leone [see (7)] no longer works, and the similarity
relationships between positive and negative samples will
not be learned.

2) wjo Aug: It signifies negative sample generation without
denoising learning, where Lgenoise [S€€ (5)] does not
work. It is noteworthy that despite generating negative
samples, it is still possible to conduct contrastive learn-
ing between positive and negative samples, i.e., Lcont
[see (7)] remains active.

3) w/o Embeder: When the Embeder, i.e., E is removed,
the architecture of SimAD regresses to a Transformer.
Originally, the value matrix in SimAD was V = WVE.
After regressing to a Transformer, the generation of V
aligns with matrices Q and K, ie., V = NWV. For
simplicity, WY represents learnable parameters, and N is
the preinput. When EmbedPatch is removed, SimAD’s
backbone reverts to a Transformer, where self-attention
is uniform across Q, K, and V.

4) wjo Asymmetric (Asym.): Our asymmetric optimization
relies on gradient stop. Removing the asymmetric opti-
mization eliminates the StopGrad from the equation.
As both mse and Similarity losses are symmetric, after
removing this operation, (7) regresses to a symmetric
optimization method.

5) w/o Cos: It indicates the removal the cosine terms from
(4), (5), and (7) while keeping the mse loss.

The detailed ablation studies are in Table V. The observa-
tions from ablation studies are summarized as follows.

1) After removing the w/o Contrastive, i.e., the removal of
positive and negative sample contrastive learning, the F'1
score of the model decreased by 7.88%, indicating that
ContrastFusion is important in learning distinct features
to differentiate between normal and abnormal samples.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on July 30,2025 at 01:35:10 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHONG et al.: SimAD: A SIMPLE DISSIMILARITY-BASED APPROACH FOR TIME-SERIES ANOMALY DETECTION 9

TABLE V
FULL ABLATION RESULTS

Datasets | MSL | SMAP | SWaT
Variations ‘ F1 Aff-Pre Aff-Rec Aff-F1 UAff-F1 NAff—Fl‘ F1 Aff-Pre Aff-Rec Aff-F1 UAff-F1 NAtf-Fl‘ F1 Aff-Pre Aff-Rec Aff-F1 UAff-F1 NAff-F1
w/o Cont. 2390 54.13 99.08 70.01 10.84 1523 | 2256 51.94 99.86 6834 1.89 747 |80.31 77.66 7652 77.09 6229 6421
w/o Aug 29.07 54.64 98.88 70.39 12.72 1698 |23.78 52.66  98.11 68.53 4.75 10.09 | 79.14 80.60 64.14 7143 6134  62.63
w/o Embeder | 27.20 54.12  98.85 69.94 10.80 1520 | 17.89 50.04 99.64 66.62 -5.76 0.15 |80.31 77.66 7652 77.09 6229 6421
w/o Asym. | 2823 5413 9894 69.98 10.86 1525 | 2239 5146 99.77 6790 -0.05 5.69 [82.01 77.35 8337 80.25 63.95 66.06
w/o Cos 28.50 5395 99.10 69.87 10.20 14.64 | 2332 5224 9991 68.61 3.11 859 |77.77 7502 83,53 79.05 60.09 @ 62.59
Ours 30.02 56.30 99.76 71.98 1850  22.37 [29.39 56.84 99.82 7244 1991 24.07 |82.03 7846  80.88 79.65 64.93  66.82
Datasets | WADI | PSM | NIPS-TS-Swan
Variations | F1 Aff-Pre Aff-Rec Aff-F1 UAff-F1 NAff-F1| F1 Aff-Pre Aff-Rec Aff-F1 UAff-F1 NAff-F1| F1 Aff-Pre Aff-Rec Aff-F1 UAff-F1 NAff-F1
w/o Cont. 62.68 7055 84.04 76.71 49.26 5520 [45.78 58.83 96.05 7296 21.47 2083 | 6434 7024 57.00 6293 4269  47.34
w/o Aug 63.19 7592  81.53 78.63 59.40  63.38 |41.79 5643 96.15 71.12 1298 22.67 | 6483 62.55 6581 64.14 27.13 36.34
w/o Embeder| 61.36  70.73  59.61 64.70 4429 4891 |49.78 61.47 9480 74.58 29.86  36.93 | 6832 71.04 62.03 6623 4547 50.14
w/o Asym. |56.89 63.33 6398 63.65 56.26 37.64 (5226 59.93 9127 7235 2493 32.62 |69.14 6885 4028 50.82 35.06 38.95
w/o Cos 63.13 72,66 7479 7371 51.69 56.43 |44.00 59.83 8697 70.89 2446  32.07 |70.79 78.76 4299 5562 4747 49.21
Ours 6398 8236 92.81 87.27 7359 7626 |52.07 6246 91.76 7433 32.63 3920 |71.23 76.17 5375 63.03 5029 53.04
25 25 25
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Fig. 7. (a) Loss and (b) F1-score variations on dataset PSM.

TABLE VI

KL DIVERGENCE BETWEEN NORMAL AND ANOMALOUS FEATURES BOTH
BEFORE AND AFTER PROJECTION

To verify the effectiveness of the EmbedPatch encoder and
ContrastFusion modules in our proposed SimAD framework
for addressing the first Challenge outlined in the introduction,
i.e., enhancing the dissimilarity between features of both nor-

Datasets | SWaT | WADI .
Varia Before Pror After Pror | Before Pro After Prov mal and abnormal data, we extracted feature representations
ariations erore . 1 0]. erore . 0]. . . .
ariations | Before Proj er Proj. | Before Proj s before and after the ContrastFusion projection head. Next, we
w/o Cont. 7.34E-01 1.66E-02 4.95E-05 2.85E-03 . : :
wio Bmbeder | 4.34E.01 > 04E 02 393E.03 1SOE01 conducted a multisampling to calculate the KL divergence
Ours 4.25E-01 5.04E-01 3.00E-02 9.89E-01 between normal and abnormal features at both stages. The

2) By disabling w/o Aug, i.e., the removal of data augmen-
tation, the detection performance of SimAD shows a
decrease of 43.69% in UAft-F1, demonstrating its ability
to improve the model’s generalization.

3) For w/o Embeder, the EmbedPatch in the attention mech-
anism degrades to a simple value matrix. The ablation
of this module has the most significant impact on the
model’s F1 score, which indicates that incorporating
EmbedPatch into the attention mechanism is crucial to
learning appropriate representations of temporal data.

4) wjo Asymmetric indicates the model without asymmetric
optimization. The ablation of this module results in a
decrease in all metrics, particularly a significant drop of
43.69% in NAfI-F1. This suggests that asymmetric opti-
mization helps the model focus on abnormal samples.

5) Experimental results of w/o Cos demonstrate that upon
removing the cosine similarity penalty, both the pre-
dictive continuity and detection performance of SimAD
decline.

The comprehensive results of ablation studies, along with
the setting of the experiment, are in Table V.

results are in Table VI. From this table, it can be observed
that removing the ContrastFusion module (w/o Cont.) leads
to an increase in KL divergence between the feature distribu-
tions of normal and abnormal data on the SWaT and WADI
datasets, indicating that the representations become more dis-
tinct. Moreover, when both components are integrated into our
model, the separation between normal and abnormal feature
distributions is maximized. This demonstrates that SimAD
effectively overcomes the limitations of previous approaches.

Moreover, Fig. 7 provides an illustration of the training
on dataset PSM. It is evident that the w/o Embedder module
achieves the lowest loss but with the lowest F'1 score. This
can be attributed to that EmbedPatch contributes SimAD to
memorizing normal samples and enhancing generalization.
By capturing the characteristics of normal data, EmbedPatch
improves the effectiveness of anomaly detection by leveraging
distinct differences between normal and abnormal samples,
as demonstrated in Fig. 8(b) and Fig. S4 in Appendix E of
the Supplementary Material. The w/o Contrastive module also
exhibits a low loss but suffers from negative optimization,
resulting in a relatively low F1 score. In contrast, SimAD,
despite having a higher loss, achieves the highest F1 score.
This demonstrates that optimizing solely for reconstruction is
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Fig. 8. Real-world case study on dataset SWaT. (a) Detection performances in the real world. (b) Similarity scores of query and embedding.

inadequate, and SimAD effectively addresses the challenges
outlined in Section I.

E. Visualization Analysis

1) Real-World Cases Analysis: The performance of SimAD
on dataset SWaT is in Fig. 8(a) and Fig. S2 (in Appendix E-
B of the Supplementary Material). The first row of images
showcases the original data and the ground truth labels. Its
y-axis represents the magnitude of the first channel in the
time series. The second row of images denotes the predicted
results, which effectively detects most anomalies by assign-
ing significantly higher scores to abnormal data. The y-axis
represents the magnitude of the anomaly score. The third and
fourth rows of images illustrate the results obtained using L2
loss and patch-based cosine similarity loss as anomaly scores,
respectively.

It is noticed that the former focuses more on short-duration
anomalies, while the latter can capture long-duration anoma-
lies. In Appendix E-B of the Supplementary Material, Fig.
S3 shows the detection results of AnomTrans and NPSR.
Our method exhibits superior performance compared with
AnomTrans, as the latter only detects a few anomalies and
encounters difficulties in accurately detecting segment anoma-
lies. The case study highlights the effectiveness and rationale
behind our anomaly score design.

2) Explanation of Patch Embedding: Fig. 8(b) shows the
detection performance of SimAD, where the fourth row
denotes the similarity between the query and the embedding of
the last layer, while the vertical axes of third and fourth regions
illustrate correlations between the query embedding and the
learned embedding of value matrices. In the third and fourth
regions of the right subfigure, the horizontal axis denotes the
ordinal number of the embedding. The colors in the heatmap
indicate the strength of these correlations, with precise values
corresponding to the color bar for reference. Specifically, given
a time window of 2048, we divide it into 64 nonoverlapping
patches, each with a length of 32. There are 64 learned
embeddings in the last layer of our EmbedPatch encoder. In
the following, we consider the 64 nonoverlapping patches from
the input window as the query embedding. Correspondingly,
the 64 learned embedding produced by the final layer of the
EmbedPatch encoder serves as the value matrices. Next, we
compute the pairwise correlations between 64 nonoverlapping

patches and 64 learned embedding representations, resulting
into an attention feature map. This feature map is depicted
in the fourth region of the right subfigure. In contrast, the
third region of the right subfigure highlights the top five most
relevant query embeddings, selected from the 64 patches (i.e.,
segments of the 2048-length time window), for each learned
embedding. In the third region, patches that exhibit weak
relevance to all embeddings are shown in black. Conversely,
patches with stronger relevance to certain embeddings are
displayed in vibrant colors, highlighting their higher corre-
lations relative to other patches. It is important to note that
the attention feature map denotes the correlations between the
query (Q) vectors and the value (V) vectors in the last layer
of the EmbedPatch encoder, i.e., the relationships between the
input patches from the time series and the learned embedding,
rather than the correlations between the query (Q) vectors and
the key (K) vectors. Combined with Fig. S4 in Appendix
E-B of the Supplementary Material, it can be observed that
in the lower layers, the embedding establishes relationships
with a majority of queries. However, only the normal data
can establish relationships with EmbedPatch in the higher
layers. This means that in the shallow layers, SimAD learns
general representations. While in the higher layers, SimAD
learns features associated with normal data, which results
in less similarity between abnormal data and EmbedPatch.
Consequently, the patch embeddings enhance the detection
performance of SimAD.

V. CONCLUSION

This article introduces a SimAD. The proposed framework
is distinguished by its simplicity and versatility, allowing
for the use of longer time windows. Experimental results
demonstrate the superiority of our method compared with
existing approaches. In addition, we present two improved
evaluation metrics, UAfF and NAff, which effectively assess the
algorithm’s performance and overcome many shortcomings
of previous metrics. In future work, we plan to extend this
detection scheme to various other scenarios and aim to develop
a unified model for anomaly detection.
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